All of the atoms of the discrete complex described here $\left(\left|\mathrm{Ni}\left\{\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right\}_{2}\right|\right.$ in the solid state, |; form), apart from the methyl groups, lie approximately in a plane. The deviation from the least-squares fit of all the atoms to the plane, excluding the CH_{3} groups, is quite small with a maximum deviation of $0.039 \AA$ for C(3).

Of particular interest are the $\mathrm{Ni}-\mathrm{S}, \mathrm{S}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths. The $\mathrm{Ni}-\mathrm{S}$ distances [2.204 (1) and $2 \cdot 192$ (1) \AA] are similar to those reported for the α form (Bonamico et al., 1965), 2.207 (2) and 2•195 (2) \AA. As compared to the $\mathrm{Ni}-\mathrm{S}$ distances of the cation tris(di- n-butyldithiocarbamato) $\mathrm{Ni}^{\mathrm{IV}}$, $\left[\mathrm{Ni}\left\{\mathrm{S}_{2} \mathrm{CN}\right.\right.$ $\left.\left.\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right\}_{3}\right]^{+}$, reported by Fackler et al. (1973), 2.261 (1) \AA, the $\mathrm{Ni}-\mathrm{S}$ distances observed here are approximately $0.06 \AA$ shorter. The observation that four-coordinate NiS_{4} cores have somewhat shorter $\mathrm{Ni}-\mathrm{S}$ bonds than do NiS_{6} cores has been previously noted (Bonamico et al., 1965). The S-C bond lengths observed here, 1.711 (3) and 1.725 (3) \AA, compare well with those of the α form, 1.713 (7) and 1.700 (7) \AA. Similar S-C distances are reported for thiourea derivatives and coordination complexes thereof (LopezCastro \& Truter, 1963; Dias \& Truter, 1964) and are considered consistent with an $\mathrm{S}-\mathrm{C}\left(s p^{2}\right)$ formulation. The $\mathrm{C}-\mathrm{N}$ bond distance observed for the β form, 1.319 (4) \AA, is only slightly shorter than the 1.33 (1) \AA reported for the α form. As discussed (Bonamico et al., 1965) this $\mathrm{C}-\mathrm{N}$ bond has considerable double-bond character. Indeed, it is the significant contribution of the thioureide form (Fackler, 1976) which is believed to lend stability to unusual oxidation of some metal centers, i.e. $\mathrm{Au}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{IV}}$ (Calabro et al., 1981; Fackler et al., 1973) and stabilize $M-C$ bonds by minimizing the
importance of the radical pathway for metal-carbon dissociation (Stein, Fackler, Paparizos \& Chen, 1981).

These studies are supported by the National Science Foundation, grant CHE-8408414 and the donors of the Petroleum Research Foundation as administered by the American Chemical Society. DDH is supported by a grant from the Welch Foundation.

References

Bonamico, M., Dessy, G., Mariani, C., Vaciago, A. \& Zambonelli, L. (1965). Acta Cryst. 19, 619-626.
Calabro, D. C., Harrison, B. A., Palmer, G. T., Moguel. M. K., Rebbert, R. L. \& Burmeister, J. L. (1981). Inorg. Chem. 20, 4311-4316.
Dias, H. W. \& Truter, M. R. (1964). Acla Cry'st. 17, 937-943.
Fackler, J. P. Jr (1976). Adv. Chem. Ser. 150, 394-406.
Fackler, J. P. Jr, Avdeef, A. \& Fischer, R. G. Jr (1973). J. Am. Chem. Soc. 95, 774-782.
Fackler, J. P. Jr, Niera, P. R. D., Campana, C. \& TrzcinskaBancroft, B. (1984). J. Am. Chem. Soc. 106, 7883-7886.
International Tables for X-ray Crystallography (1974). Vol JV. Birmingham: Kynoch Press. (Present distributor D. Reidel. Dordrecht.)
Lopez-Castro, A. \& Truter, M. R. (1963). J. Chem. Soc. pp. 1309-1317.
Main, P., Hull, S. E., Lessinger, L., Germain, G.. Declercq. J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Cristal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Sheldrick, G. M. (1981). SHELXTL. An Integrated Sy'stem for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Federal Republic of Germany.
Stein, J., Fackler, J. P. Jr, Paparizos, C. \& Chen, H.-W. (1981). J. Am. Chem. Soc. 103, 2192-2198.

Vaciago, A. \& Fasana, A. (1958). Alti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 25, 528-530.

(4-Dimethylaminopyridine)tris(η-methylcyclopentadienyl)uranium(III)

By Allan Zalkin and John G. Brennan
Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720, USA

(Received 19 February 1987; accepted 9 June 1987)

Abstract. $\left[\mathrm{U}\left(\mathrm{C}_{6} \mathrm{H}_{7}\right)_{3}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\right], M_{r}=597 \cdot 57$, triclinic, $P \overline{1}, a=15.541$ (6),$b=17.155$ (7), $c=10.303$ (4) \AA, $\alpha=106.83$ (4), $\quad \beta=106.52$ (4), $\gamma=67.04$ (4) ${ }^{\circ}, \quad V=$ $2374.7 \AA^{3}, \quad Z=4, \quad D_{x}=1.671 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\operatorname{MoK} K)=$ $0.71073 \AA, \mu=64.9 \mathrm{~cm}^{-1}, F(000)=1148, T=296 \mathrm{~K}$, $R=0.033$ for 3258 independent reflections with $F^{2}>$

0108-2701/87/101919-04\$01.50
$3 \sigma\left(F^{2}\right)$. Two independent but chemically similar molecules are found in the unit cell. U^{111} is at the center of a distorted tetrahedron consisting of the pyridine N atom and the centroids of the three cyclopentadienyl rings. Distances are: U-N 2.662(13) and $2 \cdot 627(12) \AA$; av. U-C(ring), $2 \cdot 82$ (4) \AA; av. U-Cp, $2 \cdot 56$ (2) \AA.
(c) 1987 International Union of Crystallography

Introduction. The coordination chemistry of $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{3} \mathrm{U}$ cannot be adequately described using a purely ionic bonding model; this was dramatically illustrated by the recent observation that, at room temperature, $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{U}$ readily forms a carbon monoxide complex with a reduced CO stretching frequency (Brennan, Andersen \& Robbins, 1986). As part of a study on how steric and electronic factors influence the coordinative affinity of a given Lewis base towards trivalent uranium, we have undertaken the structural characterization of $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{3} \mathrm{U}$ coordination complexes. Herein is described the structure of $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{3} \mathrm{U}\left(4-\mathrm{Me}_{2} \mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)(\mathrm{I})$.

(I)

Experimental. Red air-sensitive crystals of the complex, prepared by the addition of $4-\mathrm{Me}_{2} \mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{~N}$ to a solution of $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{3} \mathrm{U}\left(\mathrm{OC}_{4} \mathrm{H}_{8}\right)$ (Brennan, Andersen \& Zalkin, 1986a) and crystallized from ether, were sealed inside quartz capillaries under argon. Crystal $0.16 \times$ $0.18 \times 0.24 \mathrm{~mm}$ with six faces; modified Picker automatic diffractometer, graphite monochromator; cell dimensions from 21 reflections, $21<2 \theta<33^{\circ}$; analytical absorption correction, range 1.99 to 3.69 ; max. $(\sin \theta) / \lambda=0 \cdot 54 \AA^{-1}, h-16$ to $16, k-18$ to $18, l-11$ to 11 ; three standard reflections, $1.1 \%, 1.6 \%, 1.4 \%$ variations in standard intensities from average, intensities adjusted isotropically; 12468 data, 6240 independent [including 3258 with $F^{2}>3 \sigma\left(F^{2}\right)$], $R_{\text {int }}=0.043$; structure solved by Patterson and Fourier methods; refined on $F, 475$ parameters; 32 H atoms in calculated positions with fixed isotropic thermal parameters; anisotropic thermal parameters for non-hydrogen atoms with the exception of $\mathrm{C}(13)-\mathrm{C}(18) ; R=0.099$ for 6240 data, $R=0.033$ for 3258 reflections for which $F^{2}>3 \sigma\left(F^{2}\right), w R=0.038, S=1 \cdot 26 ; w=[\sigma(F)]^{-2}$, derived from $\sigma^{2}\left(F^{2}\right)=\left\{\left[\sigma\left(F^{2}\right)\right.\right.$, counting statistics only $]+$ $\left.\left(0.04 F^{2}\right)^{2}\right\}$; max. (shift $/ \sigma$) $=0.05$; empirical extinction correction, $F_{\text {corr }}=\left(1+1.8 \times 10^{-8}\right)$; max. and min. of ΔF synthesis 1.6 and $-1.2 \mathrm{e}^{-3} \AA^{-3}$; atomic f for neutral $\mathrm{U}, \mathrm{N}, \mathrm{C}$ and spherical-bonded H from International Tables for X-ray Crystallography (1974); local unpublished programs and ORTEP (Johnson, 1965).

Very large thermal parameters in cyclopentadienyl ring, $C(13)-C(18)$, indicated severe thermal motion or disorder. To get convergence in the least-squares refinements, the following distance constraints (Waser,

Table 1. Atomic coordinates and equivalent isotropic thermal parameters (\AA^{2})

1963) were applied: C (ring)-C(ring) 1.39 (1) \AA, C (ring) $-\mathrm{CH}_{3} 1.54$ (1) $\AA, \mathrm{H}_{3} \mathrm{C} \cdots \mathrm{C}$ (nearest ring neighbor) 2.52 (3) \AA. Isotropic thermal parameters were assigned to these atoms.

Atomic parameters are listed in Table 1,* and distances and angles are listed in Table 2. Figs. 1 and 2 show the two independent molecules with numbering scheme.

[^0]Table 2. Selected distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{U}(1)-\mathrm{N}(1)$	$2 \cdot 662$ (13)	$\mathrm{U}(2)-\mathrm{N}(3)$	$2 \cdot 627$ (12)
U(1)-C(1)	$2 \cdot 866$ (15)	$U(2)-C(26)$	2.850 (16)
U(1)-C(2)	2.819 (15)	$U(2)-C(27)$	2.771 (15)
U(1)-C(3)	2.792 (15)	$\mathrm{U}(2)-\mathrm{C}(28)$	2.791 (13)
U(1)-C(4)	$2 \cdot 832$ (17)	$\mathrm{U}(2)-\mathrm{C}(29)$	2.814 (14)
U(1)-C(5)	2.927 (17)	$U(2)-C(30)$	2.853 (17)
$U(1)-C(7)$	2.775 (20)	U(2)-C(32)	2.801 (17)
U(1)-C(8)	2.759 (22)	$U(2)-C(33)$	$2 \cdot 800$ (18)
U(1)-C(9)	2.807 (23)	$U(2)-C(34)$	2.801 (17)
U(1)--C(10)	2.821 (18)	$U(2)-C(35)$	2.835 (15)
U(1)-C(11)	2.753 (18)	$\mathrm{U}(2)-\mathrm{C}(36)$	2.826 (18)
$U(1)-\mathrm{C}(13)$	2.856 (18)	$U(2)-C(38)$	2.850 (19)
U(1)-C(14)	2.843 (21)	U(2)-C(39)	2.751 (19)
$\mathrm{U}(1)-\mathrm{C}(15)$	2.860 (23)	U(2)-C(40)	2.779 (19)
$\mathrm{U}(1)-\mathrm{C}(16)$	2.837 (18)	$\mathrm{U}(2)-\mathrm{C}(41)$	$2 \cdot 800$ (18)
$\mathrm{U}(1)-\mathrm{C}(17)$	2.833 (17)	U(2)-C(42)	$2 \cdot 857$ (18)
$\mathrm{U}(1)-\mathrm{Cp}(1)$	$2 \cdot 584$	$U(2)-C p(4)$	$2 \cdot 551$
$U(1)-C p(2)$	$2 \cdot 528$	U(2)-Cp(5)	2.555
$\mathrm{U}(1)-\mathrm{Cp}(3)$	$2 \cdot 590$	$U(2)-\mathrm{Cp}(6)$	2.549
$N(1)-U(1)--C p(1)$	101.7	$N(3)-U(2)-C p(4)$	$100 \cdot 5$
$N(1)-U(1)-C p(2)$	94.9	$\mathrm{N}(3)-\mathrm{U}(2)-\mathrm{Cp}(5)$	101.0
$N(1)-U(1)-C p(3)$	$103 \cdot 2$	$\mathrm{N}(3)-\mathrm{U}(2)-\mathrm{Cp}(6)$	95.8
$\mathrm{Cp}(1)-\mathrm{U}(1)-\mathrm{Cp}(2)$	117.7	$\mathrm{Cp}(4)-\mathrm{U}(2)-\mathrm{Cp}(5)$	115.3
$\mathrm{Cp}(1)-\mathrm{U}(1)-\mathrm{Cp}(3)$	116.0	$\mathrm{Cp}(4)-\mathrm{U}(2)-\mathrm{Cp}(6)$	118.0
$\mathrm{Cp}(2)-\mathrm{U}(1)-\mathrm{Cp}(3)$	117.7	$\mathrm{Cp}(5)-\mathrm{U}(2)-\mathrm{Cp}(6)$	119.3
U(1)-N(1)-C(21)	$170 \cdot 2$ (6)	$U(2)-N(3)-C(46)$	173.4 (5)

Fig. 1. ORTEP drawing of the $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{3} \mathrm{U}\left(4-\mathrm{Me}_{2} \mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$ molecule (1), drawn with 50% probability atomic thermal ellipsoids.

Fig. 2. ORTEP drawing of molecule (2), drawn with 50% probability atomic thermal ellipsoids.

Discussion. The complex $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{3} \mathrm{U}(4$ $\mathrm{Me}_{2} \mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{~N}$) is monomeric in the solid state. Three cyclopentadienyl centroids and a pyridine N form a distorted tetrahedron about the metal atom. The corresponding bond distances and angles of the two chemically similar but crystallographically independent molecules are within 3 e.s.d.'s of each other. Coordination of the pyridine N rather than the dimethylamino N to the U atom is consistent with solution measurements which indicate that pyridine
quantitatively displaces tertiary amines from $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{3} \mathrm{U}$.
The average $\mathrm{Cp}-\mathrm{M}-\mathrm{Cp}$ angle in $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{3} \mathrm{U} L$, $L=4-\mathrm{Me}_{2} \mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{~N}$, of 117° is comparable to 118° for $L=\mathrm{SC}_{4} \mathrm{H}_{8}$ (Zalkin \& Brennan, 1985), 118° for $L=\mathrm{OPPh}_{3}$ (Brennan, Andersen \& Zalkin, 1986b), and 118° in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{U}\left(\mathrm{OC}_{4} \mathrm{H}_{8}\right)$ (Wasserman, Zozulin, Moody, Ryan \& Salazar, 1983). These are distinctly different from the pattern of $\mathrm{Cp}-M-\mathrm{Cp}$ angles (106, 109 and 119°) found in $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{3} \mathrm{U}\left(\mathrm{PMe}_{3}\right)$ (Brennan \& Zalkin, 1985), where the phosphine complex is more sterically crowded. There are no exceptionally close contacts between the pyridine ligand and the cyclopentadienyl groups.
The $\mathrm{U}-\mathrm{N}$ distance of 2.64 (2) \AA in the title compound can be compared with those in the following three uranium-pyridine complexes: $2 \cdot 659$ (4) \AA in $\mathrm{U}^{\mathrm{II}}\left(\mathrm{BH}_{4}\right)_{3}\left(4-\mathrm{Ph}_{2} \mathrm{PC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$ (Wasserman, Moody, Paine, Ryan \& Salazar, 1984); 2.61 (1) \AA in UO_{2} (tropolonate) $)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$ (Degetto, Marangoni, Bombieri, Forsellini, Baracco \& Graziani, 1974); and 2.47(1) \AA in bis-(pentane-2,4-dionato)pyridinedioxouranium (Alcock, Flanders \& Brown, 1984). The U-N distance in the title compound is similar to all but the bis(pentane-2,4-dionato)pyridinedioxouranium value, indicating an insensitivity of this distance to metal oxidation state or coordination number. The bis(pentane-2,4-dionato)pyridinedioxouranium complex appears to be unusual in that a relatively short $\mathrm{U}-\mathrm{N}$ distance is achieved at the expense of a nonlinear uranyl geometry [173.5(8)ㅇ.

The methyl carbon atom of each $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}$ ligand is displaced out of the mean plane of the cyclopentadienyl C (ring) atoms by 0.04 to $0.19 \AA$, on the opposite side from the U atom. The N and methyl C atoms of the amino group are in the plane of each pyridine ring.

As there are no close non-bonding contacts, distorted $\mathrm{Cp}-M-\mathrm{Cp}$ angles, or unusual $\mathrm{U}-L$ distances in the final structure, it is reasonable to suggest that the relative coordinative affinity of the pyridine ligand in this system is dominated by electronic factors. The coplanarity of the NMe_{2} substituent with the pyridine ligand indicates substantial interaction of the nitrogen π electrons with the aromatic ring.

Helpful discussions with Professor R. A. Andersen are appreciated. This work was supported by the Director, Office of Energy Research, Chemical Sciences Division of the Department of Energy under Contract No. DE-AC03-76SF00098.

References

Alcock, N. W., Flanders, D. J. \& Brown, D. (1984). J. Chem. Soc. Dalton Trans. pp. 679-681.
Brennan, J. G., Andersen, R. A. \& Robbins, J. (1986). J. Am. Chem. Soc. 108, 335-336.
Brennan, J. G., Andersen, R. A. \& Zalkin, A. (1986a). Inorg. Chem. 25, 1756-1760.

Brennan, J. G., Andersen, R. A. \& Zalkin, A. (1986b). Inorg. Chem. 25, 1761-1765.
Brennan, J. G. \& Zalkin, A. (1985). Acta Cryst. C41, 1038-1040.
Degetto, S., Marangon, G., Bombieri, G., Forsellin, E., Baracco, L. \& Graziani, R. J. (1974). J. Chem. Soc. Dalton Trans. pp. 1933-1939.
International Tables for X-ray Crystallography (1974). Vol. IV. Table 2.2, pp. 71-102. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Waser, J. (1963). Acta Cryst. 16, 1091-1094
Wasserman, H. J., Moody, D. C., Paine, R. T., Ryan, R. R. \& Salazar, K. V. (1984). J. Chem. Soc. Chem. Commun. pp. 533-534.
Wasserman, H. J., Zozulin, A. J., Moody, D. C., Ryan, R. R. \& Salazar, K. V. (1983). J. Organomet. Chem. 254, 305-311.
Zalkin, A. \& Brennan, J. G. (1985). Acta Cryst. C41, 1295-1297.

Acta Cryst. (1987). C43, 1922-1924

Structure of a Second Polymorph of Calcium Acetate Monohydrate

By P. van der Sluis, A. Schouten and A. L. Spek*
Vakgroep Algemene Chemie, afdeling Kristal- en Structuurchemie, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands

(Received 15 May 1987; accepted 2 June 1987)

Abstract. $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}, M_{r}=176 \cdot 18$, triclinic, $P \overline{1}, \quad a=6.700$ (2),$\quad b=9.801$ (2),$\quad c=12.257$ (2) \AA, $\alpha=78.83$ (2), $\quad \beta=86.21$ (2), $\gamma=73.63$ (2) ${ }^{\circ}, \quad V=$ 757.6 (3) $\AA^{3}, Z=4, D_{x}=1.545 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo} K \alpha)=$ $0.71069 \AA, \mu=7.7 \mathrm{~cm}^{-1}, T=295 \mathrm{~K}, F(000)=368$, $R=0.029$ for 2921 observed reflections with $I>$ $2 \cdot 5 \sigma(I)$. The structure consists of infinite O-bridged Ca layers that are connected in the third dimension by hydrogen bonds via water molecules of crystallization. The Ca atoms are seven and eight coordinated.

Introduction. Two crystal forms of $\mathrm{Ca}(\mathrm{OAc})_{2}$ were obtained as a result of attempts to obtain good-quality crystals by crystallization under a variety of experimental conditions. Crystallization from pure water yielded needle-shaped crystals of a monohydrate for which the crystal structure has been reported previously (Klop, Schouten, van der Sluis \& Spek, 1984). Addition of 10% ethanol resulted in large flat needles. The ethanol was added to decrease the solubility and thereby the viscosity. A high viscosity is known to hamper crystallization. A crystal structure determination of this compound was undertaken to characterize it and to find out whether the ethanol merely changed the habit or changed the complete structure.

Experimental. The colourless transparent crystal $(0.2 \times 0.4 \times 0.6 \mathrm{~mm})$ used in this study, cleaved from a large crystal, was obtained by evaporation from a saturated solution of $\mathrm{Ca}(\mathrm{OAc})_{2}$ in a 10% ethanol/water mixture. Enraf-Nonius CAD-4F diffractometer, Zr filtered Mo $K \alpha$ radiation. Cell parameters and estimated standard deviations calculated from the setting

[^1]0108-2701/87/101922-03\$01.50
angles of 20 reflections $\left(10<\theta<15^{\circ}\right)$. Data set: ω-scan mode, $\Delta \omega=0.5+0.35 \tan \theta^{\circ}, \quad 1.70<\theta<$ $27.50^{\circ}, h \rightarrow 8 \rightarrow 0, k-12 \rightarrow 12, l-15 \rightarrow 15$, total of 3781 reflections measured, 3480 unique. Standard reflections ($\overline{3} \overline{1} 6, \overline{3} 33$), measured every 2 h , showed a linear decay of 2% and 1% fluctuation during 60 h of X-ray exposure time. Intensity data corrected for decay and Lp but not for absorption. Standard deviation calculated following McCandlish, Stout \& Andrews (1975); $\quad \sigma^{2}(I)=\sigma_{\mathrm{cs}}^{2}(I)+(P I)^{2} \quad$ with $P=0.012 .2921$ unique reflections considered observed $[I>2.5 \sigma(I)]$. Structure solved by Patterson and Fourier techniques and refined on F by full-matrix least-squares procedures. Anisotropic thermal parameters for all nonhydrogen atoms; isotropic thermal parameters for the water H atoms; one common isotropic temperature parameter for all methyl H atoms. All methyl groups were found to be disordered and refined with rigid methyl groups in two staggered positions with populations ranging from 40 to 60%. An empirical extinction correction was applied: $F^{\text {corr }}=F_{\text {calc }}[1-(6.5 \times$ $\left.10^{-7} F_{\text {calc }}^{2} / \sin \theta\right)$. Refinement converged at $R=0.029$; $w R=0.037\left[w^{-1}=\sigma^{2}(F) ; 227\right.$ parameters; $S=0.51 ;$ $\left.(\Delta / \sigma)_{\mathrm{av}}=0.03 ; \quad(\Delta / \sigma)_{\max }=0.77\right]$. Maximum and minimum residual density 0.32 and $-0.46 \mathrm{e} \AA^{-3}$ in the final difference Fourier map. Final atomic parameters are listed in Table $1 . \dagger$ Scattering factors of Cromer \& Mann (1968). Anomalous-dispersion corrections from Cromer \& Liberman (1970). Calculations carried out
\dagger Lists of structure factors, anisotropic thermal parameters, methyl H -atom parameters, additional bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44114 (21 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
© 1987 International Union of Crystallography

[^0]: *Lists of structure factors, anisotropic thermal parameters, calculated hydrogen positions, distances and angles, and leastsquares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44134 (34 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * Author to whom correspondence should be addressed.

